
Using Fractal Neural Networks to Play SimCity 1 and Conway’s Game of Life at
Variable Scales

Sam Earle
smearle93@gmail.com

Abstract

We introduce gym-city, a Reinforcement Learning environ-
ment that uses SimCity 1’s game engine to simulate an urban
environment, wherein agents might seek to optimize one or
a combination of any number of city-wide metrics, on game-
boards of various sizes. We focus on population, and analyze
our agents’ ability to generalize to larger map-sizes than those
seen during training. The environment is interactive, allowing
a human player to build alongside agents during training and
inference, potentially influencing the course of their learn-
ing, or manually probing and evaluating their performance.
To test our agents’ ability to capture distance-agnostic rela-
tionships between elements of the gameboard, we design a
minigame within the environment which is, by design, un-
solvable at large enough scales given strictly local strategies.
Given the game engine’s extensive use of Cellular Automata,
we also train our agents to “play” Conway’s Game of Life
– again optimizing for population – and examine their be-
haviour at multiple scales. To make our models compatible
with variable-scale gameplay, we use Neural Networks with
recursive weights and structure – fractals to be truncated at
different depths, dependent upon the size of the gameboard.

1 Motivation
Recent work in Reinforcement Learning has led to human-
and superhuman-level performance in a variety of strategy
games, in which players take actions on a game board of
discrete tiles (e.g., Starcraft (Vinyals et al. 2019), and Go
(Silver et al. 2016)).

However, the resultant agents’ ability to generalize to ad-
jacent tasks is not well established. We consider agents that
observe the entire board at each step, and test their ability
to generalize by increasing its size. On this larger board, lo-
cal relationships between structures on the map remain the
same, but the ways in which these might combine to form
global dynamics have been altered with the size of the board.

We focus on agents that observe the entire board because
we’re interested in problems and solutions with a global
component, where the entire board might come to bear on
any given move. The decision to take any particular action,
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then, should have the potential to be affected by the observed
state of any tile. We thus provide the entire board anew at
each step, and in turn allow the agent to act on any tile.

Our work also finds motivation in the field of urban plan-
ning, where cities have increasingly come to be modeled as
fractals (Batty and Longley 1994). We subscribe to this point
of view, and ask if urban simulations can be used to generate
such fractal urban forms. In particular, we train agents using
Reinforcement Learning to maximize populationa in urban
simulations, in an effort to simulate urban growth. Given that
we expect the products of such a simulation to be of a fractal
nature, we expect them to demonstrate structural similarity
at various scales.

2 Micropolis
We use an open-source clone of SimCity 1 – Micropolis – to
serve as a Reinforcement Learning Environment. Micropolis
is a city-simulation game, in which the player starts with a
procedurally-generated landmass, and is invited to populate
it with urban structures. The map is a square grid of discrete
tiles; on each tile, the player can place power plants (nuclear
or coal), power lines, zones (residential, commercial or in-
dustrial), services (fire stations or police departments), road,
rail, parks, stadiums and airports.

Zones can only support development if they are connected
to power, which emanates from power plants, and is con-
ducted through adjacent zones, buildings and power lines.
The amount and type of development that arises depends on
a number of factors, such as whether the zone is adjacent
to road or rail, whether it is adjacent to a park or water (this
can be seen to affect the property value of incoming develop-
ment), the city-wide tax rate, crime, pollution, and demand
(a measure of how much interest there is from outside the
city in each type of development, which is in turn affected
by the ratio of development types inside the city).

The player begins with a fixed sum of money, dependent
upon a difficulty setting, which they can spend on construc-
tion and zoning, and ultimately make back in tax revenue. In
addition to building and zoning, the player can control the
city-wide tax rate and service budgets.

The simulation depends largely on cellular automata
(Wells 2011). Besides being connected to the power grid



Figure 1: The result of a fractal neural network’s deterministic action on a 32 × 32 map, after training on a 16 × 16 map.
A human player intervened minimally during the episode, deleting power plants to encourage exploration. The city fluctuates
between an abandoned state (left) and a populous one (right).

– which is easy to implement as a cellular automaton – a
residential zone will populate according to rules about what
surrounds it. When we place a single tile of road (even road
nonadjacent to any other road, zones, or structures) next to a
residential zone, the previous low-rise development will al-
most always turn into high-rise, and adding an adjacent park
will likewise almost always cause the development to transi-
tion into the ‘high-income’ version of itself, while adjacent
or nearby coal power or polluting industry stifles develop-
ment. Traffic may flow between any two zones (populated,
powered or not) connected by a path of adjacent road tiles,
and often spreads indiscriminately to flow along any such
path.

Incidentally, cellular automata have been studied exten-
sively as a means of simulating urban growth; see (Aburas et
al. 2016) for a review, and (White and Engelen 1993) in par-
ticular for their use of cellular automata in generating fractal
forms.

2.1 Implementation and Interactivity
SimCity 1 was open-sourced in 2008, as part of the One Lap-
top Per phild Program. Its developer, Don Hopkins, refac-
tored the code, adding a GUI written in Python. The game
engine, in C++, is interfaced with python via a fixed set of
shared functions using Swift. These functions can be called
in Python to initialize, call, and query the game engine, and
our environment uses them to affect and observe the game
map.

In addition, changes can be made to the map by a human
player, via this GUI, if it is rendered during either training

or inference. Not only will the agent observe the new map-
state at the next possible opportunity, but, during training,
it will treat the player’s actions as its own. Implementation-
wise, this means that when the player interacts with the GUI,
building something on a particular tile, the build is queued,
for the agent to execute at the next available opportunity, in-
stead of whichever action had been randomly selected from
its action distribution. As a result, the bot can, in theory,
learn to (dis)favour the types of action taken by the player,
depending on their impact on reward, just as it would its
own.

During testing of this feature, for example, the agents be-
ing trained would learn quite early on to place a single nu-
clear power plant amid a field of connected residential zones,
resulting in fluctuating swaths of low-density development.
Normally, agents would spend considerable time at this lo-
cal optimum, but when a human player intervened in real
time during training, relentlessly placing roads next to such
residential zones and thus inviting stable, high density de-
velopment, agents appeared to catch on to this behaviour,
escaping the local optimum more rapidly than their peers.

During inference, the human player can manually probe
an agent’s learned policy in real time. Often, when acting on
larger maps than were trained upon, agents will build only
on small subsections of the map, or fill the entire map but
leave large subsections disconnected from power, or execute
some otherwise quasi-effective urban plan. We find that if
a human player attacks the city’s power plants, bulldozing
them or replacing them with other structures, the agent is
likely to improve upon its original city design – laying new



zones, zone-adjacent roads, and connecting structures to the
power grid, for example – before installing a new power
plant and stabilizing once again. We can thus sometimes
coax out the scale-invariant side of an agent’s behavioural
policy by using a human adversary to incite chaos on the
gameboard, forcing the agent to explore beyond local op-
tima.

It can be argued that, in such an open-ended game as
Micropolis, the goal of human play is to understand and
master the principles underlying the simulation (Friedman
1999). When we extend the existing game with an RL agent,
our goal shifts, as we navigate through its often intractable
pathologies – refractions of the game’s design through the
agent’s neural architecture.

3 Experiment Design
3.1 Micropolis
We give the agent a 2D “image” of the board, in which pix-
els correspond to tiles, and channels correspond to tilestates.
We include three additional channels of local information in
our representation which correspond to population density
(so our agent can “see” when development has arisen in a
particular zone), traffic density, and whether or not a tile is
powered. Finally we include channels of global information,
which take the same value at all tiles; these are overall pop-
ulation, and residential, commercial, and industrial demand.
At each step, the agent observes the gameboard, and outputs
a 2D image of the same dimensions, whose channels cor-
respond to tile-specific actions. The agent may build any of
the structures available to the player, in addition to land and
water tiles. In this action space, the agent specifies a single
build to be carried out before the following step.

In our experiments, the agent is rewarded at each step by
the city’s population, plus a bonus for the number of distinct
types of populated zone in the city. A step through the en-
vironment corresponds to 100 ticks in the game engine: this
maximizes the positive feedback an agent is likely to receive
from population-inducing tile configurations (for example,
the placement of a residential zone next to a powered tile),
especially early in training, when the agent is likely to over-
write them with other builds in fewer turns than it would
take for population to arise on the zone tile at slower game
speeds.

We give our agent virtually unlimited funds, and no option
to change the default tax rate and service budgets, focusing
instead on its ability to place a coherent set of structures
on the gameboard, and noting that it is possible to develop
populous cities without changing these default values, and
still a difficult, combinatorially explosive task to do so opti-
mally with infinite funds. We note also that a limit on funds
would likely only punish the agent unduly during early train-
ing, when it is building overzealously and largely at random;
moreover, most populous cities the agent ultimately learns to
design receive a positive monthly income as a result of tax-
ation.

However, constraining the budget could provide an inter-
esting avenue for future work. We might, for example, add
a new strategic element to the game by starting the agent

Figure 2: Deterministic performance of a Fractal Network
on the power puzzle, on a map of width 20.

with very limited funds, forcing it to start small in its city-
planning and wait for taxes to come in before continuing
construction.

We limit the agent to a 16 × 16–tile patch of empty map
during most of our experiments. This is the smallest size at
which the agent begins to experience reward, and thus learn,
relatively quickly: any smaller and the agent will too often
be overwriting its previous builds for it to stumble upon a
chance adjacent power-and-residential pairing. By keeping
the map small, we decrease the amount of time and compute
needed to complete a training session.

3.2 Power Puzzle
Given that Micropolis’ logic is so inherently local, and that
we supply certain global information at the local level in
our experiment design, we might expect agents to develop
highly local strategies. We test an agent’s ability to make
connections between distant elements of the gameboard by
designing a simple mini-game (Figure 2). At the beginning
of every episode of gameplay, between 1 and 5 residential
zones are placed randomly on the map, followed by a nu-
clear power plant. The agent’s action-space is restricted to
one channel; it may only build power wires, and cannot over-
write existing structures (the map is unchanged if it elects to
build on such a tile).

As before, we reward the agent, at each step, by the popu-
lation on the gameboard. Though it will be disparate and un-
stable in isolated residential zones, it is guaranteed to arise
once they are powered, so that the agent is rewarded for each
zone it manages to connect to the power grid. In sum, we
can expect the agent to find the the minimum spanning tree
over nodes of the random power network: beginning from
the power plant, and repeatedly connecting the nearest un-
connected node. In this mini-game, agents with local strate-
gies will at best be able to branch out blindly from power
sources to sinks, while an agent with the appropriate global
strategy would immediately draw the shortest possible path
between a source and a sink, even if these are far removed
on the gameboard.

Incidentally, this mini-game can be solved by a Cellu-
lar Automaton, which can itself be implemented as a hand-
weighted, recursive Neural Network. Unlike the networks



we train with backpropogation, however, the only such im-
plementation we have found demands a novel activation
function. Still, this coincidence helps motivate our use of
fractal networks, which – after the weight-sharing intro-
duced below – contain subnetworks otherwise identical in
structure to our implementation of the CA; and could thus
learn to implement something similar, perhaps using spare
activation channels to work around the simplicity of the im-
posed ’ReLU’ activation function.

3.3 Game of Life
Given Micropolis’ heavy reliance on Cellular Automata, and
the more general use of CA as models of urban life; and the
fact that – using Micropolis as an environment – CA can
be handcrafted to play certain simple, urban-planning mini-
games; we also develop an environment that consists of a
single, simple CA – namely, Conway’s Game of Life. In our
adaptation of GoL, the gameboard is populated randomly;
each tile (or “cell”) is “alive” with 20% chance at the begin-
ning of each episode. The agent observes the board directly
as a 1−channel image, chooses one cell to bring to life, lets
the automaton simulate through one tick, and repeats. We re-
ward for population, measured as the number of living cells
on the gameboard, at each step.

Hypothetically, insofar as a successful agent merely adds
to a non-empty and stable configuration without itself caus-
ing instability, we expect a relatively local strategy to suffice.
Insofar as the agent learns to stabilize chaotic gameboards,
or, even moreso, as it learns to induce chaotic but consis-
tently populous gameboards, we expect it to apply a more
global strategy, wherein it must anticipate the dissipation of
causal relations across the gameboard a few steps in advance
to quell or control chaos.

3.4 Network Architectures
Because our agents observe the entire gameboard, whose di-
mensions need not be fixed in advance, our networks should
accept inputs of various sizes. We thus opt for networks
made up of convolutional layers, which do exactly this.

Our simplest model is based on the “FullyConv” model
in (Vinyals et al. 2017), and consists of two distinct convo-
lutions followed by ReLU activations, of 5 × 5 and 3 × 3
kernel size respectively. This is followed by a 1 × 1 con-
volution to produce the action distribution, and, to produce
the value prediction, a dense hidden layer with 256 neurons,
followed by a tanh activation, and a dense layer with scalar
output.

But the dense hidden layer in the value-prediction subnet-
work must be initialized with the input dimesions known in
advance, so, in “StrictlyConv,” we replace it with a single
convolution with a stride of 2, repeatedly applied as many
times as necessary to yield a scalar value prediction (Fig-
ure 3). This allows for our input dimensions to be at least
any square with side-length corresponding to some integer
power of 2, though other rectangles are possible in practice,
with the borders of certain activations going ignored by the
subsequent convolutional layers. Both models have 32 chan-
nels in all convolutional layers.
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Figure 3: Using fractal expansion to increase receptive-field
size beyond that of baseline models. ck are convolutions of
various kernel widths, d are strided convolutions, fij are
convolutions of kernel width 3, and S corresponds to the
value-prediction subnetwork that appears in both models.
With intra-column weight-sharing, for every i, and any j,
j′; fij = fij′ . With inter-column weight-sharing, for any i,
i′, and j, j′; fij = fi′j′ . Receptive fields of output neurons
are shown in blue. Dashed lines represent averaging.

We thus have a simple baseline capable of operating at
multiple scales. However, neurons in its action ouput have
limited receptive fields, which prevent the model from acting
immediately on long distance relations between structures
on the gameboard. Even if we were to make StrictlyConv
recurrent, it would take several turns before being able to as-
sociate structures on the map which are not captured by the
agent’s receptive field, diffusing them spatially through its
2D memory. Without recurrence, our more narrow-sighted
agents are confined to using the board as external memory;
for example, by building paths of wire from a source or sink,
which (given our representation of the board) carry infor-
mation about the connected zone’s powered-ness across the
board itself.

We could increase the receptive field of such a model,
without adding new parameters, simply by repeating the
3× 3 convolution in the body of the network, so that it gets
applied multiple times in sequence. However, this can make
the network prohibitively deep, causing instability during
training.

To stabilize training, we use skip connections, allowing
shallower paths from input to output to run in parallel with
deeper ones. To structure these skip connections, we follow
the example of Fractal Neural Networks (Larsson, Maire,
and Shakhnarovich 2016), whose network architectures are
given by the repeated application of a fractal expansion rule.
In the body of our network, we use one fractal “block,” the



result of 5 fractal expansions, and 32 channels in the hidden
2D activations.

To build a fractal block, we begin with a single convolu-
tion. With each fractal expansion, the structure of the net-
work is obtained as follows: two copies of the existing net-
work are stacked, and a single convolution is added as a
skip connection, which receives the same input as the stack,
and whose output is averaged with the stack’s, to produce
the overall block’s output. After 5 expansions, the convolu-
tion with which we began has produced 25−1 = 16 vertical
copies of itself, and we can extract from the overall block
a 16-layer-deep subnetwork consisting only of these convo-
lutions in sequence, which we’ll refer to as the 0th “col-
umn” of our network. The 0th column has a receptive field
of 33 × 33, so that, at its output, an action in one corner
of the board can be affected by an observation in the oppo-
site corner. The 1st column of our network has as its seed
the convolution introduced as skip connection in the first ex-
pansion, leading to a column of depth 24−1 = 8. The other
columns, in order, have depth 4, 2, and 1.

We train a single block of 5 columns. Unlike the au-
thors, we try sharing weight layers between the copies of
subfractals created during expansion, so that each column
taken individually corresponds to the repeated application
of a single convolution – we refer to this variation as intra-
column weight-sharing. With intra-column weight-sharing,
each column can be conceived of as a continuous-valued
Cellular Automaton (Griffeath et al. 2003), which ’ticks’ as
many times as there are layers in the column, during each
pass through the network.

We also try inter-column weight sharing, wherein the en-
tire fractal block uses one unique layer of convolutional
weights, so that each column taken individually repeats the
same convolution a different number of times. Under this
constraint, each column corresponds to a variable number of
ticks through the same continuous-valued CA.

We train Fractal Networks with local and global drop-
path as outlined in the original paper, which puts pressure
on individual subnetworks – especially columns – to learn
the task independently (so long as these subnetworks span
from input to output in the original network and have no
other leaves). Our agents are trained using the A2C algo-
rithm given in (Mnih et al. 2016). Like the StrictlyConv net-
work, the Fractal Network’s body is followed by a 1×1 con-
volution to produce the action distribution, and a repeated,
strided convolution to produce the scalar value prediction.

4 Results
All experiments were executed using 96 concurrent envi-
ronments to train the agent, with an Intel i7 CPU and one
Nvidia GTX 1080 Ti GPU; each run completed within at
least approximately 24 hours. The Power Puzzle was fastest,
at only 20M frames, taking several hours, followed by the
Game of Life, taking roughly half a day, with Micropolis
being the most time-consuming. There is likely room to op-
timize GoL, by instantiating the environment itself (a CA)
as a hand-weighted Convolutional Neural Network, and of-
floading it to the GPU.

4.1 Power Puzzle
In the Micropolis Power Puzzle minigame, StrictlyConv
matches FullyConv’s performance, and does better earlier
on in training . Since both of these models have receptive
fields of 7 × 7, they will not be able to identify the short-
est path between a pair of zones that are more than 7 tiles
apart horizontally or vertically. To deal with these cases, the
model can at best learn to branch out blindly from existing
nodes.

The fractal network, with its larger receptive fields, is able
to surpass the performance of both of the baseline mod-
els. Without weight sharing, the overall block dominates
performance, followed by the deepest, then second-deepest
columns, and then by the rest, which learn to do virtually
nothing useful. The fact that deeper columns exhibit superior
performance is not surprising: their larger receptive fields al-
low them to act on long distant connections.

What is surprising is the failure of shallower columns.
Column 2, for example, has a 9 × 9 receptive field, larger
than that of the FullyConv model, at 7 × 7, but column 2
learns to do nothing independently. We interpret this as the
result of a co-adaptation between these shallower columns
and the rest of the network, which drop-path is unable to
mitigate: the shortsightedness of shallower columns is just
too detrimental to the performance of the overall network
for them to be allowed to act alone. Interestingly, by sharing
weights within and between columns of the fractal, we can
increase the autonomy of individual columns at a slight cost
to overall performance.

During interactive evaluation, we note that placing one
or two power-wires adjacent to a source can result in the
agent continuing construction in this direction until it either
gets close enough, and subsequently connects, to a sink, or
hits the edge of the map. Indeed, agents can be deceived,
especially on larger gameboards, to reach out in the wrong
direction (i.e., away from the nearest zone).

4.2 Micropolis
When maximizing population in Micropolis, StrictlyConv
outperforms FullyConv considerably, but both are unstable,
and do not maintain peak performance for very long. The
fractal networks, at their best, narrowly outperform the base-
line models. Though the reward of each subnetwork still
fluctuates over the course of training, rarely do all subnet-
works experience a simultaneous dip in performance.

With weight sharing disabled, the deepest column of
the fractal network performs the worst, and the shallowest,
the best, on the Micropolis population game. When intra-
column weight sharing is enabled, the deepest column suf-
fers drastically, while the others are more tightly-clustered.
With inter-column sharing enabled, the performance ceiling
increases again, and the deepest column is much more suc-
cessful. This indicates that by training a single set of weights
to perform a task as a shallow recursive network, we have fa-
cilitated training the same set of weights, on the same task,
as a much deeper recursive network.

The agents learn to densely fill maps of various sizes with
zones of all types (Figure 1), with an aversion toward indus-
try. It connects these zones to power largely without wire,



Figure 4: Baselines and Fractal Networks, evaluated over the course of training. ’col -1’ refers to the whole network.



Figure 5: StrictlyConv (left) and Col. 1 of Fractal w/ intra-
& inter-col. sharing (right), at 64 × 64. Cells placed by the
agent are red.

simply by always placing new zones next to existing, pow-
ered ones. It clusters zones by type, with larger clusters of-
ten forming on larger maps, and provides most zones ac-
cess to a road tile, by spreading small cul-de-sacs through-
out the map. The agent exploits the traffic simulation: its
roads somehow largely avoid attracting any traffic – which
would create development-inhibiting pollution – but still al-
low adjacent zones to support high-density development.
Our agents can support stable populations on small maps,
but cannot properly manage demand at larger scales, result-
ing in maps whose population fluctuates violently.

4.3 Game of Life
In maximizing population in GoL, StrictlyConv vastly out-
performs FullyConv.

A fractal block without weight-sharing falls short of
StrictlyConv, but its 8-layer deep column outperforms Ful-
lyConv. Its 2-layer and 1-layer columns perform the worst
on the task. This suggests that neurons in the action distribu-
tion of the network are best off with receptive fields approx-
imately the size of the gameboard. The 8-layer Column 1 is
also closest in terms of receptive-field size to our baseline
models; perhaps this column is only held back by the oth-
ers. We would be keen to retrain the fractal models without
drop-path, allowing the other columns to co-adapt with col-
umn 1 (rather than learning the task independently), letting
the latter take the lead.

Enabling weight-sharing does further damage to these
other columns, suggesting that the policy learned by column
1 cannot be so easily scaled to use differently-sized receptive
fields.

Behaviourally speaking, our agents tend to work around
existing chaos, branching out from living cells to build
space-filling paths which span the board in a few broad
strokes before filling it out in more detail. Indeed, the in-
creased net activity on larger gameboards inhibits the agent’s
behaviour during inference; decreasing the initial population
on these local gameboards, however, allows the agent to suc-
cessfully scale up its strategy (Figure 5).

When a human player builds a living cell next to a struc-
ture built by the agent, it will often immediately build a new
branch at this location.

5 Conclusion
StrictlyConv consistently matches or outperforms Fully-
Conv; this may be because it has drastically fewer param-
eters (and the target value functions are simple in the envi-
ronments studied here), because its recursive structure has a
normalizing effect on the learned value function, or because
it allows spatially-invariant processing of the map. Setting
all weights of the recursive value subnetwork to 1, for ex-
ample, counts the total number of living cells in Game of
Life, which is exactly the agent’s reward.

Replacing a strictly convolutional network-body with a
fractal block can provide narrow gains in the Micropolis and
Power Puzzle environments. By design, the Power Puzzle
is the only task studied here that explicitly demands non-
local gameplay strategies. As evidenced by the baselines’
performance on the task however, a clever enough ’blind’
approach, branching out in various directions in search of
proximal relationships, does quite well (at least on small
maps). Training on larger maps, with larger fractal blocks,
and fewer zones to start, should more firmly evidence the
advantage of large receptive fields in this task.

In Micropolis, the agent learns highly effective local
strategies in its shallow columns. When it is encouraged
transfer these strategies to deeper subnetworks via-weight-
sharing, overall performance increases, perhaps because the
agent benefits from a more global approach that takes ad-
vantage of larger receptive fields.

Results in GoL reveal the primacy of local strategies, as
agents learn how to place cells locally in order to build sta-
ble structures, which will result in neither death, nor new
life. We wonder if there is not a better strategy, however,
in which the agent builds structures which result in a cal-
culated bursting-forth of life, which may fill the board more
quickly than the agent could on its own. We could encourage
such behaviour by decreasing the number of builds an agent
makes during an episode, and/or alternating between several
agent builds, and several tick of the automata, allowing for
the construction of distinct traveling/growing structures.

The fact that such drastic reductions to the number of pa-
rameters via weight-sharing in our fractal blocks often yields
comparable performance is striking, though we cannot say
for certain that this is not owing to the overall simplicity of
the tasks at hand.

Conversely, the fact that one layer of weights can be re-
peatedly copied to create deep, trainable networks suggests
an interesting avenue for Neuroevolution. For instance, we
might try, midway through training, replacing an individual
layer of an existing network with a complex Fractal Block
built up entirely of copies of the existing layer, which are
then allowed to change independently, thus granting the net-
work the capacity for more complex behaviour.

In general, using fractal expansion to evolve Neural Net-
works would allow models to directly repurpose or “exapt”
existing structures (and the behaviours they instantiate),
which could prove more effective than developing new ones
from scratch.
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