
Visualizing Game Mechanics with Automated Clustering

Jacopo Ameli1,2 and David Thue1,3

1Department of Computer Science 2Department of Comp. Sci. and Engineering 3School of Information Technology
Reykjavik University University of Bologna Carleton University
Menntavegur 1, 101 Mura Anteo Zamboni 7, 40126 1125 Colonel By Drive
Reykjavik, Iceland Bologna BO, Italy Ottawa, ON, K1S 5B6, Canada

jacopo18@ru.is, david.thue@carleton.ca

Abstract

Visualizing game mechanics is an important way for game
developers to refine, review, and improve their work, and
to facilitate communication between designers and program-
mers. This challenge has seen many different manual and au-
tomatic approaches, but they have been either too abstract and
distant from the game, too close to the actual code, or lack-
ing in connections to the code. We propose a modular system
that can semi-automatically build and display a graphical rep-
resentation of a given game’s mechanics, to stimulate reason-
ing about the dependencies between the game’s variables. We
present an initial implementation of this visualization tool,
which can read a graph from a user-made file and partition it
based on user parameters. We also discuss a pilot evaluation
of the tool’s capacities for creative support.

Introduction
The complexity of game development is increasing, as more
studios use the latest technologies and target powerful ma-
chines (Koster 2018). Part of the increase in complexity of-
ten involves a game’s mechanics, which in turn affects its
design and implementation. To simplify the tasks of reason-
ing over and iterating on a game’s mechanics, we present
a creativity support tool that allows visualizations of game
mechanics to be generated and explored.

Good practices for general software design include the
use of visualization tools during initial phases, like UML
diagrams (Arlow and Neustadt 2005) and other tools for
fast prototyping, extracting requirements, or determining the
scope of the project. Visualizing code is important for de-
signing, testing, and improving a codebase (Park and Jensen
2009), which are common needs in game development stu-
dios, especially in teams that often have members joining or
leaving. Visualizing and abstracting game logic is also help-
ful for supporting discussions, discovering meta-mechanics
and hidden behaviours, or prototyping (Fullerton 2014).
Game developers use many different and specialized tools
for visualization, and some of these (e.g., pen and paper
prototyping (Mignano 2016)) are created on a per-problem

Copyright c© 2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

basis by highly experienced developers, with a specific ob-
jective or issue in mind; such tools often lack generality,
which inhibits their reuse (Machinations (Dormans 2012;
2018) is an exception). Meanwhile, visual scripting tools
like Blueprints in Unreal Engine 4 (Epic Games 2012) are
often limited by the types of available modules or their com-
plexity and performance characteristics. As a result, they are
more commonly used for prototyping and as a partial re-
placement for traditional programming. While our contribu-
tion falls into the former category, we offer the innovation
that our tool uses Artificial Intelligence techniques to help
designers reason about a game’s mechanics.

Before we can visualize game mechanics, we first need
a representation that will work with any game. Thue and
Bulitko (2018) used deterministic, Factored-state Markov
Decision Processes to represent a game’s internal logic. A
simplified version of this representation is a directed graph,
where the nodes are the game’s variables and the edges are
the direct dependencies between them that arise from the
game’s mechanics (Figure 1). We tested this representation
with pen and paper prototypes during an initial participatory
design session. We hypothesize that by visualizing such a
graph of game mechanics and highlighting potentially inter-
esting areas within it, we can help designers reason about
possible improvements to their game. We use graph cluster-
ing to identify different areas of a game mechanics graph.

Figure 1: An abstract view of game logic by Thue and Bu-
litko (2018), used with permission. Vertices are game state
variables from Mario Kart (Nintendo 2008). Edges show ab-
stract game mechanics as dependencies between variables.

Concepts and Terminology. Our visualization of game
logic derives from Thue and Bulitko’s (2018) representation
of game mechanics as deterministic, Factored-state, Markov
Decision Process (FMDP). A non-factored, deterministic
MDP is defined by a set of possible states S, a set of pos-
sible actions A, and a transition function τ : S × A → S
to transition between states, where in this case τ(s, a)→ s′

means that the state s′ will deterministically occur when an
agent performs an action a in state s (Bellman 1957). In the
factored-state version (Chakraborty and Stone 2011), each
single state s is defined by a vector of state factors. For the
purposes of this work, the agent is a player of a game, the
state factors are variables whose values comprise the game’s
state, and the transition function represents the game’s me-
chanics and thus the dependencies that exist between its
variables. A graphical model of a game’s mechanics, as in
Figure 1, can be represented as a directed graph where each
vertex represents a game variable and each edge represents a
direct causal dependency between two variables. For terms
related to graph theory, we use definitions based on work
by Schaeffer (2007) and Menegola (2012). Given a graph
G = (V,E) where V is a set of vertices and E ⊆ V × V
is a set of edges, an edge (v, w) defines a connection be-
tween a pair of vertices v, w ∈ V . A path from one vertex
to another is a sequence of edges between the two vertices,
and if a graph has paths between every pair of vertices in
V , then that graph is said to be connected. For a given edge
(v, w) ∈ E, w is also called a neighbour of v, and the set
of all neighbours of a vertex is the neighbourhood of that
vertex. Given that m = |E| is the number of edges in G and
n = |V | is the number of vertices in G, the standard density
of a full graph G is given by:

δ(G) =
m(
n
2

) , (1)

where
(
n
2

)
is the total number of possible edges between the

vertices. In a weighted graph, a weight function ω(v, w) →
[0, 1] ∈ R assigns a real-valued weight to each edge.

Part of our approach involves separating a graph repre-
sentation of a game’s mechanics into a number of parts.
This is known as a k-way partitioning problem, which we
introduce here. Consider a positive integer k and a weighted
graph G = (V,E). Intuitively, part of the goal of the
k-way partitioning problem is to divide G into k parts
{P0, P1, ...Pk−1}, each of which is a subset of V , such that
none of the parts overlap and all of the parts can be com-
bined to recover the full set of vertices. The set of k parts
is called a partition, P , of G. While each part Pi ∈ P
refers only to vertices in G, it can be useful to consider
two kinds of edges in G: those that connect vertices within
any single part (internal edges), and those that connect ver-
tices from two different parts (external edges). An induced
subgraph of a graph G = (V,E) is a graph (Pi, EPi)
where Pi ⊆ V and EPi ⊆ E, such that EPi includes only
the edges from E that have vertices in Pi: ∀(v, w) ∈ E,
v, w ∈ Pi =⇒ (v, w) ∈ EPi

. The induced subgraph
of a part Pi contains only the edges in E that connect Pi’s
vertices. Given two parts Pi and Pj , each edge in E that
connects two vertices across Pi and Pj is called a cut edge.

Given a partition P of graph G, consider the set C of all cut
edges across all pairs of parts Pi and Pj (where i 6= j) in
P : C = {(v, w) ∈ E|v ∈ Pi, w ∈ Pj , i 6= j}. The full
goal of the k-way partitioning problem is to find a partition
P such that the size of C is minimized and P ’s parts have
roughly equal numbers of vertices. When G is a weighted
graph, the size of C is the total weight of the edges in C; if
G is not weighted, the size of C is given by its cardinality.
Given a partition P of a graph G, we say that a cluster is
a subgraph that is induced by any part Pi in P . Each clus-
ter should have certain properties: (i) it should be connected
– there should be a path between every pair of cluster ver-
tices that traverses only the cluster’s internal edges; (ii) it
should have more internal edges than external edges; (iii) its
density should be higher than the density of the full graph
(Equation 1). These properties would identify subgraphs that
have highly interconnected vertices, possibly representing a
subsystem within a system. We assume that graphs derived
from implemented game systems are highly clusterable; this
assumption is driven by the nature of human labor division,
as well as the most widely used patterns for system design,
like the top-down approach (Schank and Abelson 1977).

Problem Formulation
Given a graph where the vertices are variables of a game’s
state and the edges are the dependencies between them, we
aim to highlight areas within that graph that might be inter-
esting for the designer to consider. By “interesting areas”,
we mean those that might not match the game’s actual sub-
systems or the designer’s grouping of the mechanics, but
could instead spark new considerations and reasoning about
the game. We decided this after an initial participatory de-
sign session, where it became apparent that simply matching
the code structure perfectly would yield no new informa-
tion, and matching a designer’s particular grouping would
be highly unlikely. Ideally, designers should be encouraged
to think causally about their game’s mechanics and improve
them through iteration. Since our solution’s success depends
on whether or not it supports the creative process of design-
ers, we will report its Creativity Support Index (Carroll and
Latulipe 2009), as collected from a group of game designers.

Related Work
Some game design tools offer assistance from Artificial In-
telligence systems for generating game content, while also
helping with parameter tuning and balancing (Perez-Liebana
et al. 2018). To support analysis, other tools can automat-
ically generate heat maps of movements, trajectories, and
other data in multi-player or single-player levels while also
suggesting improvements (Andrade et al. 2006). Such tools
are usually employed to visualize data gathered during tests
or live play, and can help discover meta-mechanics. They
are usually introduced to visualize the effects of the design
on the game’s flow and enjoyment, and they do not aim to
visualize the game’s mechanics themselves. The game en-
gine Unreal Engine 4 (Epic Games Inc. 2012) offers a vi-
sual scripting tool called Blueprints (Epic Games 2012) that
allows users to instantiate objects within the game world, in-

voke individual functions or general events, implement level
triggers, AI behaviours, and more. Visual scripting tools
such as Blueprints serve a different purpose than what we
aim to achieve; they support implementing a game’s design,
while our work seeks to support general, creative reason-
ing about a game’s design. Machinations (Dormans 2012;
2018) is a tool for visualizing and testing game mechanics
by abstraction. It requires the user to manually build an in-
teractive model of the logic of the game so that its game-
play can then be abstractly simulated in a graph-like user
interface. It provides an approximation of board game pro-
totyping and testing, and it is completely independent from
a game’s implementation. As with other independent tools
and methods, it loses relevance as soon as the implemen-
tation changes significantly; manual synchronization is re-
quired. While our solution also requires some initial man-
ual input, the creation of the visualization is semi-automatic;
new graphs and partitions are computed automatically in re-
sponse to user inputs.

Proposed Approach
We adopted the simplified version of Thue and Bulitko’s rep-
resentation of game mechanics as edges that connect indi-
vidual variables (vertices) in a directed graph (Figure 1). We
will refer to this representation as a game graph. In that rep-
resentation each directed edge from variable v tow indicates
that v’s value is used (by the game’s mechanics) to compute
a new value for w at one or more times during gameplay.
Each edge thus represents the direct, causal dependence of
the target variable on the source variable, and tracing a vari-
able’s causal ancestors or descendants can reveal (indirect)
dependencies between potentially distant variables in the
graph. We assume that including all of a game’s variables
in a game graph would impede the graph’s usefulness and
readability for designers. To support representing dependen-
cies between only some of a game’s variables, we extended
Thue and Bulitko’s representation to include a weight on
each edge of the graph. This weight represents the degree
to which the edge’s target variable depends on its source
variable. A weight of 10 represents direct dependence and
close definitions in the script (e.g., w’s value is computed
from v’s in a single line of code and they are defined in the
same component), while 1 represents highly indirect depen-
dence and distant definitions. This extension allows edges in
the game graph to represent indirect dependencies between
vertices, which helps the graph remain connected when less-
important variables are omitted.

Finding Clusters. Our approach is driven by the intu-
ition that there exists a structure underlying a given game’s
graph whose analysis might lead to new insights regard-
ing the game’s design. Specifically, we suspect that dif-
ferent clusters of a game’s graph can be conceptualized
as systems (or subsystems) within the game’s mechanics,
and that presenting designers with different candidates for
such systems might serve as a creative aid. Our solution
uses automated clustering to generate different candidates
for systems that might exist within the game’s mechan-
ics. Specifically, to solve the k-way partitioning problem,

Algorithm 1: Finds a partition with connected parts.
Data: Graph G, Partition P
Result: A partition with connected parts, P ′
X ← ∅ // initialize set of explored vertices
P ′ ← ∅ // initialize output partition
foreach part Pi ∈ P do

foreach vertex v ∈ Pi do
initialize empty queue of vertices Q
P ′i ← ∅ // initialize new part
if v 6∈ X then

X ← X ∪ {v} // mark as explored
P ′i ← P ′i ∪ {v} // add to new part
N ← {w ∈ Pi : w ∈ Neighborhood(v)}
foreach w ∈ N do

enqueue w in Q
end

else
continue

end
while Q is not empty do

q ← dequeue from Q
X ← X ∪ {q}
P ′i ← P ′i ∪ {q}
N ← {w ∈ Pi : w ∈

Neighborhood(q), w 6∈ X}
foreach w ∈ N do

enqueue w in Q
end

end
P ′ ← P ′ ∪ {P ′i}

end
end
return P ′

we: (i) apply a Multi-Level Kernighan-Lin algorithm to
find a tentative partition (Hendrickson and Leland 1995;
Kernighan and Lin 1970), (ii) create a second partition by
separating the found parts into sets of vertices that belong to
connected subgraphs (clusters; see Algorithm 1), and (iii),
if the two partitions are not the same, merge parts in the
second partition until a total of k parts are obtained (Algo-
rithm 2), and return the result. If the clusters induced from
the parts were not required to each be (internally) connected,
they could include variables that were completely unrelated
to one another. If the parts were unbalanced, some clusters
could be too small or too big to be relevant or readable. This
balance is guaranteed, to a degree, by the partitioning algo-
rithm and the ordering of parts to be merged in Algorithm 2.

Estimates of Quality. To support generating a variety
of different partitions, our solution estimates a measure of
quality for each partition. Since each cluster should have
higher density than the full graph and more internal edges
than external edges, we considered using external den-
sity (Schaeffer 2007) as a possible measure of quality, but
the equations that we found in the literature lacked any pa-
rameters that could be used to prioritize different types of re-

Algorithm 2: Merges partition parts to up to k parts.
Data: Partition P , desired number of parts k, Graph G
Result: A partition with k parts, P .
while |P | > k do

sort P ’s parts from smallest to biggest
found← False
foreach part Pi ∈ P do

foreach part Pj ∈ P : Pj 6= Pi do
if Pi is connected to Pj in G then

P ← P\{Pi, Pj} // remove parts
Ptemp ← Pi ∪ Pj // merge parts
P ← P ∪{Ptemp} // add merged part
found← True
break

end
end
if found then

break
end

end
end
return P

sults. To address this problem, we developed an alternative
estimator of external density that contains such a parame-
ter. The standard estimator of external density (Equation 2)
considers edge cuts only in terms of their global cardinality:

δext(G|P0..Pk−1) =
|(v, w) | v ∈ Pi, w ∈ Pj , i 6= j|
n2 − n−

∑k−1
l=0 |Pl|2 − |Pl|

(2)

Instead, our estimator (Equations 3 and 4) considers edge
cuts in terms of cardinalities that are local to each cluster,
and uses the parameter x to define a family of external den-
sity estimators:

δext(x,G|P0...Pk−1) =

k−2∑
a=0

k−1∑
b=a+1

(δpar(Pa, Pb))
x(

k
2

) , (3)

where:

δpar(Pa, Pb) =
|(v, w) | v ∈ Pa, w ∈ Pb|

|Pa||Pb|
. (4)

Figure 2: A toy graph for demonstrating different quality es-
timators. The letters and colours represent vertices that be-
long to different clusters, the solid arrows represent internal
edges, and the dashed arrows represent external (cut) edges.

To understand the difference between the standard estima-
tor and ours, consider the the graph shown in Figure 2. Using
Equation 2, the standard external density δext would be 1

18 .
This value gives a reasonable indication of the graph’s over-
all density, as it takes into consideration the edge cuts, the
total number of possible edges, and the internal edges of the
clusters. Calculating the external density with our estimator,
however, can give us more information. First, we use Equa-
tion 4 to calculate the partial external density between each
pair of clusters. For clusters A and B, Equation 4 yields 1

9 ,
while the partial external density is 2

9 between B and C and 0
between A and C (there is no cut edge between them). Once
the partial densities have been calculated, we already have
information on which clusters might affect the overall exter-
nal density, and by how much. Finally, we compute the over-
all external density using Equation 3 which for x = 2 would
equal 0.02, for x = 1 would equal 0.1, and for x = 1

2 would
equal 0.27. As a result, different values of x favour different
kinds of partitions – particularly, with different amounts or
sizes of clusters. As an example, Figure 3 shows the same
graph partitioned using x = 2 and x = 1.

Figure 3: Graph partitioned with x = 2 (L) and x = 1 (R).

In addition to allowing our solution to generate a variety
of different clusters, our quality estimator offers a way to
compute that is more modular than the standard approach,
and this offers an opportunity to save some computation.
Specifically, when any change to the graph leaves some of
the partition’s parts unchanged, only some of the partial den-
sity values need to be recomputed.

Search. In our context, the choice of k in the k-way parti-
tioning problem can be somewhat arbitrary – some designers
might not know (nor care to specify) how many clusters the
algorithm should find. To support this scenario, our solution
can search automatically through a space of differently-sized
partitions and return one based on its estimated quality.

Architecture and Implementation
Figure 4 shows the system architecture of our prototype, all
of which has been implemented except for the code analyzer.
The tool’s systems include a loader for reading game vari-
ables and their dependencies as inputs into to the system, a
graph database for storing the loaded data, a partitioner,
estimator, and searcher for automatically finding clusters
within a given graph, a user interface to facilitate users ex-
ploring and modifying the visualized graphs and their clus-

Figure 4: An overview of our solution’s architecture.
Rounded rectangles show modules that interact directly with
the Module Hub. The dashed line shows a module with
no current implementation. The cylinder shows storage. El-
lipses show sub-modules used by the searcher.

ters, and a module hub to handle communication and pri-
mary control flow across the other modules. During typical
execution, the loader keeps track of changes in the game’s
code by reading the latest data from a given code file. The
module hub uses data from the loader to update the inter-
nal graph representation in the database, and invokes the
searcher to find a way to cluster the graph. Finally, the sys-
tem shows the partitioned graph through the user interface
(UI; Figure 5) and handles communication between the UI
and the other modules.

The tool is meant to be used mainly during development,
once a playable prototype can be reasoned over and refined.
Some modules contain implementations of the algorithms
and equations we introduced in the Proposed Approach sec-
tion. The partitioner finds clusters (connected induced sub-
graphs) within a full graph, and it implements a Multi-Level
Kernighan-Lin algorithm that is originally from a neural net
simulator (Kernighan and Lin 1970; Nengo 2018). We added
a method to separate the initial tentative parts into parts be-
longing to connected subgraphs or clusters (Algorithm 1). If
those parts are not the same as the initial parts, it tries to get
a connected result (Algorithm 2). The estimator calculates
the overall quality of a partition using our adapted estimate
of external density (Equations 3 and 4). Our implementation
allows the user to choose between four different estimators,
with x = 2, 1, 12 and 1

3 , respectively. As shown in Figure 3,
using different values of x during the search process can re-
sult in different numbers of clusters being found. We now
present the remaining modules.

Code Analyzer. The code analyzer is meant to analyze the
game’s codebase and automatically construct a graph rep-
resentation. This means that it should be able to identify
and track the graph’s vertices (game variables) and connect
them according to their direct dependencies. Furthermore, it
should also estimate how closely the two variables are de-
fined as a script closeness weight to the edge. For exam-

ple, xPos = xPos + xSpeed; would be abstracted as
a vertex xPos with a self-dependency, a vertex xSpeed,
and an edge going from the latter to the former. The edge
weight would be high, as it is a direct dependency. The im-
plementation of the code analyzer remains as future work –
creating it will take substantial work, and we wished to first
perform an initial assessment of the other parts of the tool.
Nonetheless, we confirmed the possibility of creating the an-
alyzer via early discussions with researchers of causality in
Computer Science. The code graph files are currently cre-
ated by the user via their knowledge of the game’s code.

Loader. The loader converts a given code file into an in-
ternal representation that is used by the rest of the tool. Its
current implementation can load data from DOT (.dot) files
and tab-separated value (.tsv) files. DOT is an open file for-
mat that facilitates describing graphs. We supported .tsv files
because they allowed for easier testing and evaluation, as
they can be created easily from spreadsheets. The first col-
umn and the first row of the sheet contain the variable/vertex
names. A non-zero entry in a cell indicates an edge from the
row variable to the column variable, and the value in the cell
is the edge weight. Empty and zero-valued cells represent
non-edges in the graph.

Database. The database stores the internal representation
of the graph. In the current implementation, it also stores a
script closeness factor and computes changes to the graph
based on it. The factor specifies how closely the edge
weights in the graph should follow the analyzer’s estimated
script closeness. On a scale of 1 to 10, a script closeness
factor of 1 would bring all current edge weights down to a
minimum of 1, while a factor of 10 would bring them up to
their original values, as given by the following equation:

ω(A,B) = 1+ 1
9 (scriptFactor− 1) ∗ (originalWeight− 1).

Searcher. The searcher module finds the best quality
graph partition by exploring a space of possible partitions
using a partitioner and an estimator, but it is independent
from the partitioner’s algorithm and the estimator’s quality
calculation. In the prototype, the searcher explores differ-
ent numbers of partitions (k), linearly, increasing k by 1 it-
eratively and checking the quality of the current test parti-
tion using a user-selected estimator; iteration stops when the
quality starts decreasing.

User Interface. The UI provides the user with a readable
graph and tools to modify a partition to their liking (Fig-
ure 5). For the user interface of the prototype, we used the
mxGraph library (Jgraph Ltd. 2018), which includes many
tools and data types to easily implement a graph visual-
izer/editor. The user can change different parameters for par-
titioning, including: (i) the script closeness factor, or how
close the graph edge weights should be to the analyzer’s
(or the user’s) estimate of the dependence between two vari-
ables; (ii) which estimator will be used to calculate the qual-
ity of the graph – this changes the exponent x in the modified
external density equation; and (iii) how many parts should be
in a partition – by default it is automatic, but it can also be
manually specified. The users can also specify a timeout for

Figure 5: An initial view of our software’s user inter-
face. A sample game graph for the game Tetris is shown
(Bullet Proof Software, Nintendo 1989).

the algorithm, choose which automatic layout to use, change
the value and colour of single vertices or their parent group,
show any edge weight, and recursively highlight in red the
incoming edges for the selected vertex.

Evaluation
To better understand our tool’s capacity to support creative
reasoning, we conducted an evaluation with 36 undergrad-
uate students who were presently enrolled in a course on
designing and developing games. They had already been di-
vided into 12 teams of 3 to 4 students, and each team already
had a working prototype of a game that they were develop-
ing for the course. The games were very diverse, including
competitive multiplayer platformers and point-and-click ad-
venture games. We began our study by introducing the tool
and giving tutorials on how to generate the required input
file and how to understand and use the tool. After filling a
spreadsheet with variables from their game (∼30 minutes)
and the dependencies between them (∼45 minutes), each
team then downloaded it as a tab-separated value file and
loaded it into the tool. The tool then immediately visualized
the game graph via the tool’s user interface. We provided
each team with some example questions for the teams to
ask themselves (e.g., “Why are these variables grouped to-
gether?” or “Can we add other parameters to influence this
mechanic?”), as prompts for using the tool for the remaining
time. At the end of this 2-hour process, we asked each par-
ticipant to complete a survey instrument for individually col-
lecting the Creativity Support Index (CSI) (Carroll and Lat-
ulipe 2009). The CSI is designed to evaluate the “amount of
helpfulness” of a creative tool, and it is determined through
a survey. The result of this instrument is a value from 1 to
100, where 1 is the worst score and 100 the best, which can
be averaged with the results of multiple participants to give
an indication of the usefulness of the software as a creative
tool. The final CSI Score average that our tool obtained was
53.07, with a standard deviation of 12.07. Under an assump-
tion of normality, this gives us a 95% confidence that the
tool’s true average score is between 28.93 and 77.21.

Discussion, Limitations, and Future Work
While some teams found it helpful - for instance, one team
identified a new lighting subsystem to centralize - the eval-
uation shows promising but inconclusive data about the use-
fulness of our prototype as a creative tool; the high variance
makes it unclear where the true average CSI score would lie.
The high variation among the types of games that were ana-
lyzed might contribute to the variance, as might the general
design competence of our participants, who were largely in-
experienced designers. We also did not control for any ben-
efits coming from the initial spreadsheet-filling process, but
we suspect that any new ideas that arose while using the tool
were likely to have been influenced by using it.

Several changes could be made to the tool to improve its
accessibility and usefulness. On a representational level, the
game graph loses some information regarding execution or-
der, conditions, and values. We hope that this simplification
makes the tool more intuitive, but this should be investigated
further to find whether a better trade-off exists. The current
manual input method for the game graph is cumbersome,
and it hinges on the user being skillful at interpreting the
game’s code. Implementing a code analyzer might help in
this regard, although correctly identifying which variables
should or should not be included in a graph might be a dif-
ficult problem. The analyzer could collect runtime informa-
tion, like frequency of access to a variable and probability
of choosing a specific branch of code, in order to support
higher-level considerations. It might also use data types, an-
notations and save files to better filter the variables.

The current prototype uses a widely implemented parti-
tioning algorithm with additional checks to ensure that the
results are connected clusters, but this solution is computa-
tionally expensive. It would be interesting to compare the
performance of different potential algorithms. A subset of
the algorithms could also guarantee connected results with
low external density, to further speed up the process.

Conclusion
This paper proposed a semi-automated approach to generat-
ing a visual representation of game mechanics with a game
graph and automatically finding clusters therein. We also
proposed a new alternative measure of external edge den-
sity for partitions, which offers more flexibility than more
standard measures. We created a prototype capable of par-
titioning a given, weighted game graph into parts accord-
ing to different quality parameters, and then displaying the
result in an interactive application. We tested the prototype
and evaluated it using the Creativity Support Index survey.
The results were promising but inconclusive, and the high
variation in game types and design experience of the par-
ticipants may have contributed to the high variance in the
results. While a code analyzer would be useful for a future
implementation, the tool already provides a new, more gen-
eral approach to visualizing game mechanics, and it may yet
help designers with reasoning creatively about their games.

Acknowledgements. We thank Tigran Tonoyan for his
help with the custom external density formulas, and the
Erasmus+ funding programme for their financial support.

References
Andrade, G.; Ramalho, G.; Gomes, A. S.; and Corruble, V.
2006. Dynamic game balancing: an evaluation of user sat-
isfaction. In Proceedings of the 2nd AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2006), 3–8. Marina del Rey, California: AAAI Press.
Arlow, J., and Neustadt, I. 2005. UML 2 and the Unified Pro-
cess: Practical Object-Oriented Analysis and Design. Pear-
son Education. Google-Books-ID: Fme5TXzP0VgC.
Bellman, R. 1957. A markovian decision process. Indiana
University Mathematics Journal 6:679–684.
Carroll, E. A., and Latulipe, C. 2009. The Creativity Support
Index. In CHI ’09 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’09, 4009–4014. New York,
NY, USA: ACM.
Chakraborty, D., and Stone, P. 2011. Structure learning in
ergodic factored MDPs without knowledge of the transition
function’s in-degree. In Getoor, L., and Scheffer, T., eds.,
Proceedings of the 28th International Conference on Ma-
chine Learning (ICML-11), 737–744. New York, NY: ACM.
Dormans, J. 2012. Engineering emergence: applied theory
for game design. Ph.D. Dissertation, University of Amster-
dam.
Dormans, J. 2018. machinations.io - the game design tool.
Epic Games Inc. 2012. Unreal Engine 4. Game Engine.
Epic Games. 2012. Blueprints Visual Scripting.
Fullerton, T. 2014. Game design workshop: a playcentric
approach to creating innovative games. AK Peters/CRC
Press.
Hendrickson, B., and Leland, R. 1995. A multilevel algo-
rithm for partitioning graphs. In Proceedings of the 1995
ACM/IEEE Conference on Supercomputing, Supercomput-
ing ’95. New York, NY, USA: ACM.
Jgraph Ltd. 2018. mxGraph Library. original-date: 2012-
05-21T20:19:37Z.
Kernighan, B. W., and Lin, S. 1970. An efficient heuristic
procedure for partitioning graphs. The Bell System Technical
Journal 49(2):291–307.
Koster, R. 2018. The cost of games. VentureBeat.
https://venturebeat.com/2018/01/23/the-cost-of-games/.
Bullet Proof Software, Nintendo. 1989. Tetris. Game
[Gameboy]. Nintendo.
Nintendo. 2008. Mario Kart Wii. www.mariokart.com/wii/.
Menegola, B. 2012. A Study of the k-way Graph Parti-
tioning Problem. Master’s thesis, Federal University of Rio
Grande do Sul.
Mignano, M. 2016. Use Paper Prototyping to design
your games. GamaSutra, www.gamasutra.com/blogs/
MarcoMignano/20160725/277766/Use Paper Prototyping
to design your games.php.

Nengo. 2018. Nengo Neural Net Simulator.
https://github.com/nengo/nengo-1.4.
Park, Y., and Jensen, C. 2009. Beyond pretty pictures: Ex-
amining the benefits of code visualization for Open Source

newcomers. In 2009 5th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 3–10.
Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; To-
gelius, J.; and Lucas, S. M. 2018. General Video Game AI: a
Multi-Track Framework for Evaluating Agents, Games and
Content Generation Algorithms. arXiv:1802.10363 [cs].
arXiv: 1802.10363.
Schaeffer, S. E. 2007. Graph clustering. Computer Science
Review 1(1):27–64.
Schank, R. C., and Abelson, R. P. 1977. Scripts, Plans,
Goals, and Understanding: An Inquiry Into Human Knowl-
edge Structures. Lawrence Erlbaum Associates. Google-
Books-ID: YZ99AAAAMAAJ.
Thue, D., and Bulitko, V. 2018. Toward a Unified Under-
standing of Experience Management. In Proceedings of the
14th AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE’18), 130–136. AAAI
Press.

